
KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

KMP String Searching

Bruce Merry

IOI Training Mar 2014

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Outline

1 Background

2 Knuth-Morris-Pratt

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

The Problem

Given a string H (haystack) and another string N
(needle), find all places where N occurs in H.

These places might overlap.
The “strings” might not be made up of English letters,
but of numbers or other objects.

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

The Problem

Given a string H (haystack) and another string N
(needle), find all places where N occurs in H.
These places might overlap.

The “strings” might not be made up of English letters,
but of numbers or other objects.

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

The Problem

Given a string H (haystack) and another string N
(needle), find all places where N occurs in H.
These places might overlap.
The “strings” might not be made up of English letters,
but of numbers or other objects.

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Simple Solution

Try every possible substring to H and compare to N

Implemented by std::search
Complexity is O(|H| · |N|).

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Simple Solution

Try every possible substring to H and compare to N
Implemented by std::search

Complexity is O(|H| · |N|).

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Simple Solution

Try every possible substring to H and compare to N
Implemented by std::search
Complexity is O(|H| · |N|).

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Some String Algorithms

Knuth-Morris-Pratt: Runs in Θ(|H|+ |N|)
Boyer-Moore: Worst-case O(|H|+ |N|), much better for
normal text
Horspool: Simplified Boyer-Moore, worst case
O(|H| · |N|)
Rabin-Karp: O(|H|+ |N|+ m|N|) for m matches, except
for pathological cases
Aho-Corasick: Generalized KMP that searches for
multiple strings

For contests, Boyer-Moore and Horspool are not useful.

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Some String Algorithms

Knuth-Morris-Pratt: Runs in Θ(|H|+ |N|)
Boyer-Moore: Worst-case O(|H|+ |N|), much better for
normal text
Horspool: Simplified Boyer-Moore, worst case
O(|H| · |N|)
Rabin-Karp: O(|H|+ |N|+ m|N|) for m matches, except
for pathological cases
Aho-Corasick: Generalized KMP that searches for
multiple strings

For contests, Boyer-Moore and Horspool are not useful.

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Overview

Process one character from H at a time, keeping track
of the longest prefix of N matching at this point.
If the next letter of H doesn’t match our current prefix of
N, we fall back to a shorter prefix and try again.

A B C A B A B A C A B A B A C A B A D
A B A C A B A D

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Failure Function

Given a prefix N[:i], what is the largest j < i such that
N[:j] is a suffix of N[:i]?

Pre-computed, stored in a table f[i]

Useful to set f[0] = -1

f[i], f[f[i]], f[f[f[i]]] etc. give all the prefixes
of N[:i] that are also suffixes.
Need to compute in linear time

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Failure Function

Given a prefix N[:i], what is the largest j < i such that
N[:j] is a suffix of N[:i]?

Pre-computed, stored in a table f[i]

Useful to set f[0] = -1

f[i], f[f[i]], f[f[f[i]]] etc. give all the prefixes
of N[:i] that are also suffixes.
Need to compute in linear time

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Failure Function

Given a prefix N[:i], what is the largest j < i such that
N[:j] is a suffix of N[:i]?

Pre-computed, stored in a table f[i]

Useful to set f[0] = -1

f[i], f[f[i]], f[f[f[i]]] etc. give all the prefixes
of N[:i] that are also suffixes.

Need to compute in linear time

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Failure Function

Given a prefix N[:i], what is the largest j < i such that
N[:j] is a suffix of N[:i]?

Pre-computed, stored in a table f[i]

Useful to set f[0] = -1

f[i], f[f[i]], f[f[f[i]]] etc. give all the prefixes
of N[:i] that are also suffixes.
Need to compute in linear time

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Failure Function Computation

It can be computed by dynamic programming:
Set f[0] = -1

If N[:i].endswith(N[:j]), then
N[:i-1].endswith(N[:j-1]). Thus j is
f r (i − 1) + 1 for some repeat count r .
Only need to check that N[i-1] == N[j-1]

Just try all values of j until one fits or j = −1.
Exercise: prove that this takes only linear time.

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Failure Function Computation

It can be computed by dynamic programming:
Set f[0] = -1

If N[:i].endswith(N[:j]), then
N[:i-1].endswith(N[:j-1]). Thus j is
f r (i − 1) + 1 for some repeat count r .

Only need to check that N[i-1] == N[j-1]

Just try all values of j until one fits or j = −1.
Exercise: prove that this takes only linear time.

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Failure Function Computation

It can be computed by dynamic programming:
Set f[0] = -1

If N[:i].endswith(N[:j]), then
N[:i-1].endswith(N[:j-1]). Thus j is
f r (i − 1) + 1 for some repeat count r .
Only need to check that N[i-1] == N[j-1]

Just try all values of j until one fits or j = −1.
Exercise: prove that this takes only linear time.

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Failure Function Computation

It can be computed by dynamic programming:
Set f[0] = -1

If N[:i].endswith(N[:j]), then
N[:i-1].endswith(N[:j-1]). Thus j is
f r (i − 1) + 1 for some repeat count r .
Only need to check that N[i-1] == N[j-1]

Just try all values of j until one fits or j = −1.

Exercise: prove that this takes only linear time.

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Failure Function Computation

It can be computed by dynamic programming:
Set f[0] = -1

If N[:i].endswith(N[:j]), then
N[:i-1].endswith(N[:j-1]). Thus j is
f r (i − 1) + 1 for some repeat count r .
Only need to check that N[i-1] == N[j-1]

Just try all values of j until one fits or j = −1.
Exercise: prove that this takes only linear time.

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Failure Function Code

int L = N.size();
vector<int> fail(L + 1);
fail[0] = -1;
for (int i = 1; i <= L; i++)
{

int f = fail[i - 1];
while (f >= 0 && N[f] != N[i - 1])

f = fail[f];
fail[i] = f + 1;

}

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Knuth-Morris-Pratt Code

int match = 0;
for (char c : H)
{

while (match >= 0 && N[match] != c)
match = fail[match];

match++;
if (match == int(N.size()))

cout << "Found!\n";
}

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Summary

Always O(|H|+ |N|) (no pathological cases)

Works with arbitrarily-large alphabet
Simple to implement
Requires O(N) memory
Can stream in H

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Summary

Always O(|H|+ |N|) (no pathological cases)
Works with arbitrarily-large alphabet

Simple to implement
Requires O(N) memory
Can stream in H

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Summary

Always O(|H|+ |N|) (no pathological cases)
Works with arbitrarily-large alphabet
Simple to implement

Requires O(N) memory
Can stream in H

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Summary

Always O(|H|+ |N|) (no pathological cases)
Works with arbitrarily-large alphabet
Simple to implement
Requires O(N) memory

Can stream in H

KMP String
Searching

Bruce Merry

Background

Knuth-Morris-
Pratt

Summary

Summary

Always O(|H|+ |N|) (no pathological cases)
Works with arbitrarily-large alphabet
Simple to implement
Requires O(N) memory
Can stream in H

	Background
	Knuth-Morris-Pratt

